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Chapter 1 

Introduction 

Flood flows in excess of a reservoir's capacity must be passed down- 

stream in a manner which does not endanger the dam or surrounding hydraulic 

structures. This is not a trivial task as the flow must fall a great distance to 

reach the river bed. These high current velocities coupled with a free-surface 

can easily lead to regions of low pressure in which cavitation may occur or to 

the formation of standing waves and an uneven flow distribution. Poor flow 

distribution will yield circulation and high velocities at the base of the spill- 

way (or outlet channel) known as the "stilling basin," resulting in downstream 

scour, potentially undermining the structure and causing both bank erosion 

and stilling basin damage. 

Presently, the design of these structures is accomplished primarily 

through large scale hydraulic models. An example is the Grapevine Emer- 

gency Spillway Model at the Waterways Experiment Station (WES) shown in 

Figure 1.1. A large scale is necessary to eliminate scale-effects due to the vis- 

cosity of the model fluid; i.e., the same fluid (water) is used as in the field 

problem. The model shown is a 1:60 undistorted scale reproduction of the 

spillway section and the apron; it includes a portion of the upstream reservoir 

and the channel downstream. In the figure we see the jump at the toe of the 

spillway apron, in which the flow rapidly decelerates and becomes subcriti- 



Figure 1.1: Hydraulic Spillway Model. 



cal. Along the apron the flow is supercritical (flow velocity is greater than the 

wave speed) and in this case is relatively smooth. If the upstream approach 

conditions are poor, oblique jumps will develop producing circulation in the 

downstream subcritical channel. This will cause excessive scour and damage. 

The model is used to eliminate the cause of poor circulation. The model is 

rebuilt or modified for each design trial; e.g., by sidewall boundary reshaping 

and changing the bed's lateral curvature. Each modification is expensive to  

construct and time consuming. A detailed numerical model could significantly 

reduce the design costs and enhance understanding of the flow phenomena. 

1.1 Background 

A principal aspect of high velocity flow associated with spillways and 

outlet channels is the formation of standing waves. A disturbance caused by an 

obstacle in the flow or by lateral transition will propagate out away from the 

source. If the flow velocity is faster than the wave celerity, c, the disturbance 

cannot travel upstream. Instead it will be swept downstream forming a wake 

or standing wave. 

The wave celerity is dependent upon its wavelength [40] and is given 

by 

e = [(gA/2a) tanh (2ah/A)]+ (1.1) 

where, e is the wave celerity, g is the acceleration of gravity X is the 

wavelength, and h is depth. The dispersion of these wavelengths is a result of 

the reduction of the pressure gradient due to the vertical accelerations (with 

the shorter wavelengths moire greatly affected). 



From (1 . I) ,  the maximum celerity is associated with the longest wave- 

lengthldepth ratio and has a value c,.. = ( g h ) i .  Thus, if the Froude Number, 

F, zz 4 (where, v is the flow velocity), is greater than unity all wavelengths 
(gh)  = 

will propagate downstream. This is known as supercritical flow. Conversely, if 

F, < 1 the flow is subcritical. A common simplification in numerical modeling 

of these flows is the long-wave or shallow water approximation. This results 

in a hydrostatic pressure distribution with all wavelengths having the same 

celerity, c,,, . 

1.2 Previous Research 

One approach to flow over curved beds in hydraulic modeling is through 

the use of potential flow theory. The water surface is determined via the 

Bernoulli equation. An inverse approach in which the coordinates are the 

dependent variables and the stream function and velocity potential are inde- 

pendent variables has been used by several researchers, e.g. see Watters and 

Street [62] for an early application and Cassidy [lo] and Moayeri [44] for meth- 

ods which handled more general geometry. 

Examples of the direct approach are given in Bettes and Bettes [7] 

and Ikegawa and Washizu [30]. Here the stream function and velocity potential 

are the dependent variables. The grids adapt to follow the water surface. These 

examples are two-dimensional (longitudinal and vertical resolution) and thus 

cannot determine the standing wave patterns and nonuniform flow distributions 

laterally. 

Another approach is to use the shallow water equations. These equa- 



tions may be derived following the procedure originated by Friedrichs [24] and 

extended by Keller [35] (see also Stoker (561) by utilizing an asymptotic expan- 

sion in a shallowness parameter 

where, 1 is the radius of curvature of the free-surface and d is a characteristic 

depth. To lowest order, the standard shallow water equations are hydrostatic 

and assume a small channel slope, these equations are referred to as the St. 

Venant equations [50]. There have been applications to conditions of high ve- 

locity (see e.g. [39, 16, 32]), but the assumption of mild slope and hydrostatic 

pressure limits its use in some practical applications such as spillway simula- 

tions. 

A nonhydrostatic pressure distribution may be incorporated by in- 

cluding higher-order terms (see Abbott and Rodenhuis [2]) known as the Boussi- 

nesq terms. Applications of these equations to supercritical flow have been 

made by Gharangik and Chaudry [26], though the bed is again assumed to 

have a mild slope and the equation set involves higher derivatives. 

Dressier (201 produced a more general set of one-dimensional shallow 

water equations, in which channel bed curvature is included without resort- 

ing to incorporation of higher-order terms in the shallowness expansion. This 

formulation leads to the equations 



Figure 1.2: One-dimensional equation coordinate system. 

where alphabetic subscripts indicate differentiation and the pertinent variables 

are (see Figure 1.2): 

t is time 

sl is the coordinate parallel to flow bed 

93 is the coordinate orthogonal to sl 

n is the bed curvature; n(sl) 

8 is the angle from horizontal to the tangent of the channel bed; 

O(s1) 

h is the depth; h(sl, t )  

J is the jacobian, J = (1 - K ( s ~ ) s ~ ) ;  J(s1, 93) 

P is the pressure 



u is the current velocity in the sl direction u = ii/ J(s3); u(s1, ~ 3 ,  t )  

ii is the current velocity in the sl direction at the channel bottom, 

i. e., C = u(sl,O,t) 

w is the current velocity in the s3 direction; w(sl,sg, t )  

p is the density, assumed to be a constant 

g is the acceleration of gravity. 

Dressler's expansion is applied to the two-dimensional Euler equations 

in the orthogonal curvilinear system defined by sl, s3. In the same manner as 

Friedrichs, irrotationality is assumed. The other basic assumptions are constant 

density, no lateral variation and that the ambient surface pressure is zero. The 

usual kinematic surface conditions, of no penetration at the channel bed and 

that a particle on the free-surface remains on the surface, are enforced. The 

irrotationality assumption is reasonable for converging flow [38], as is the case 

in the vicinity of the spillway crest. Even after the development of the turbulent 

boundary layer this assumption for the flow profile is quite reasonable. The 

resistive action of the channel and eddy viscosities resulting from turbulence 

can be included in an empirical term like the Chezy formula. Furthermore, 

Dressler [21] developed corrections to the Chezy and Manning coefficients to  

accommodate bed curvature. 

Dressler's formulation yields u, h,  and P to order c0 and w to order 

E ' .  (The value of w to order EO is simply w - 0 which is identical to the re- 

sult in standard shallow water theory.) Given the zero-order perturbation for 

the solution u and h ,  the next higher approximation of w may be calculated. 

This treatment utilizes evaluation of the equations at the channel bed to  re- 



move some complicating terms. Sivakumaran [51, 521 generalizes the derivation 

further to a two-dimensional surface. Again, irrotationality is assumed. The 

one-dimensional equations when evaluated at the bed then become: 

where, 

and ( is the elevation of the bed above some reference level with Po the ambient 

pressure at the free-surface. Both of these sets shall be referred to as Dressier's 

equations throughout the present study as these two formulations are equiva- 

lent. This model appears applicable for -0.85 < ~h < 0.5 and Sivakumaran 

[51,53] has demonstrated a good agreement with experimental results over the 

wider range -2 5 rch 5 0.54. 

1.3 Objectives 

The principal objective of this present research is to develop and eval- 

uate a generalized set of shallow water equations containing bed curvature 

effects to simulate important aspects of flow over curved beds, specifically as- 

sociated with spillways or outlet works. 

Subordinate object.ives in support of the primary aim are: 



1. Via a perturbation analysis develop the generalized set of shallow equa- 

tions without excluding vorticity about the direction normal to the bed. 

2. Develop a one-dimensional finite element model for preliminary tests of 

these equations with a particular emphasis on the effects of curvature. 

Results will be compared to the steep-slope shallow water equations which 

do not include bed curvature. 

3. Develop a two-dimensional numerical model of this equation set. 

(a) Make self-consistency test of the model to demonstrate that the 

model matches the derived equations. 

(b) Test the numerical method employed by comparison to  flume water 

surface data. 

(c) Make comparisons to flume results for these equations, the standard 

steep-slope shallow water equations and the St. Venant equations. 

1.4 Important Results 

The important results from this work are: 

1. The development of a system of nonhydrostatic two-dimensional shallow 

water equations that are not restricted to irrotationality. 

2. A comparison with the standard steep-slope shallow water equations re- 

veals unexpected errors upstream of a simulated dam crest. 

3. A numerical scheme that shows promise for super- and subcritical flow 

in hydrodynamic modeling. 



4. An in-depth comparison of the usefulness and limitations of these new 

equations along with more traditional St. Venant and steep-slope stan- 

dard shallow water equations. 

5. A numerical model capable of numerically simulating hydraulic flow along 

chute spillways and outlet works. 

6. A data set of water surface elevations from an outlet works that is of 

general use. 

1.5 Outline of Treatment 

A general set of shallow water equations which is nonhydrostatic and 

which allows vorticity is derived in Chapter 2. The derivation involves an 

asymptotic expansion in a shallowness parameter for the bed-fit ted Euler equa- 

tions. Preliminary testing of these equations in one dimension is conducted in 

Chapter 3. A comparison with a standard steep-slope shallow water equation 

set is made. In Chapter 4 we detail the development of the two-dimensional 

model with special attention to a numerical scheme to better treat the highly 

convective flow conditions. A more in-depth set of tests is then conducted for 

the two-dimensional generalized shallow water equations (Chapter 5). We first 

test the validity of the code for several test problems. The numerical scheme 

and the treatment of boundary conditions are then compared with the mea- 

sured water surface in a flume for a supercritical transition. The influence of 

curvature and the mild-slope assumption (for the St. Venant equations) are 

made apparent by comparison with previously collected flume data. The most 

general test of the equations is a comparison to water surface of an outlet- 



works flume. Here the bed contains curvature and there are lateral transitions. 

Tests on this configuration are made for the St. Venant equations, the steep- 

slope standard shallow water equations and the generalized set by comparison 

of predicted water surface elevations with flume results. Chapter 6 contains 

conclusions concerning the usefulness of these equations, their advantages and 

disadvantages, and recommendat ions for additional research. 



Chapter 2 

Equation Development 

The free-surface and the nonhydrostatic pressure aspects of the flow 

were included in the previous equations, but vorticity about the bed-normal di- 

rection was excluded. It is important that eddy patterns and vorticity resulting 

from sidewalls and the drag due to bottom friction be reflected in the equations 

to distinguish the design alternatives. Also, the variation in pressure due to 

curvature, in fact, may rival that of the hydrostatic pressure. These problems 

cannot be adequately modeled using the previous perturbation formulations. 

The present approach yields a more general formulation that does not restrict 

vorticity about bed-normal axes while including bed-curvature effects. 

The derivation developed here employs concepts common to  the stud- 

ies of Friedrichs, Keller and Dressler and also involves easing of the irrotational- 

ity restriction with extension to a two-dimensional surface. The basic approach 

is to use an asymptotic expansion of the dependent variables of the three- 

dimensional Euler equations (written for an orthogonal curvilinear coordinate 

system) in a shallowness parameter E. 

2.1 Basic Equations 

The derivation begins with the Euler equations: 



1 1 
v t + - V ( v . v ) - v x w + - V P - g = o  

2 P 
(2.2) 

where, w is the vorticity vector, and g is the body force per unit mass. The free- 

surface kinematic boundary condition requires that a particle on the surface 

remain on the surface, so that 

This may be written 

where, u,  v, and w are in the sl ,  s 2 ,  and s3 directions, respectively. There is 

also a bottom kinematic boundary condition that the velocity normal to the 

bed be zero. This implies 

w ( s I , s ~ , o , ~ )  = 0 (2.5 j 

The pressure at  the free-surface is a constant, here taken as the reference value 

zero, 

P(s1, ~ 2 ,  h, t )  = 0 (2.6) 

The irrotationality condition implies that the vorticity vector components in 

the sl and s2  directions are zero, 

The coordinate system shown in Figure 2.1 is a mutually orthogonal 

system. The coordinate directions sl and sz are in fact curvilinear, and ss 

is normal to the surface so defined. Therefore, s3(x, y, Z )  = c (where x, y,  z 



Figure 2.1: Bed-fitted coordinate system. 

are cartesian coordinates) defines a coordinate surface above the bed. An 

infinitesimal vector dg that lies within the bed has a length given by 

or, 

where, 

and x is a position vector. For the surface-normal coordinate (E - e) 1. 

As one moves along the 33 direction, and C2 are scaled in relation to s3 



as jl - C1 (1 - and similarly for the s2 direction. This formulation of 

the metrics requires that sl and s2 not only be orthogonal but also principal 

directions. The curvature in the sl direction, for example, is given by, (see 

Where N is the unit vector normal to the sl - s2 surface; if is parallel to 

the sl tangent vector then the curvature along sl is an extremum and sl is a 

principal direction. The normal vector remains in the sl -s3 plane; sz is normal 

to sl and hence is also a principal direction. Introducing this coordinate system 

(2.1)-(2.7) and simplifying, we find the following equation set. 

Continuity Equation: 

sl Momentum Equation: 

s2 Momentum Equation: 

s3 Momentum Equation: 

U v 1 
wt + -Wq + -Wa2 + ww,, + u 2  + ($) v2 + -., -, = 0 (2.12) 

3 1 3 2 2 P 



Irrotationali ty Condition: 

Free-Surface Boundary Conditions (at s3 = h ): 

Channel Bed Boundary Condition: 

These equations are quite complex and our objective now is to  extract the 

important simplifications of these equations that result when the flow depth is 

small, 

In the manner of Friedrichs, the equations may be nondimensionalized 

and the dependent variables expanded in powers of E .  Typical length scales 

are the depth "d" and the free-surface radius of curvature "In. As in shallow 

water theory the relationship with velocity and thus time is assumed by the 

approximate celerity of a free-surface wave, ( g d ) i  [56].  

Nondimensionalizing, we let cr, P ,  y and r be the new independent 

variables so that 

s 1  = l a  u = ( g d ) !  li ( I  = fl ~1 = C l / d  jl = Cl (1 - i l P )  
s 2 = l y  v = ( g d ) + i .  c2=t2 ~2 = j2 = ( 2  (1 - k2P) 



where the tildes ( - ) indicate nondimensional quantities. Recasting the gov- 

erning equations in the dimensionless form and then dropping the tildes for 

convenience, equations (2.9)-(2.17) become 

Continuity Equation: 

E { ( j ~ u ) ,  + ( j lv) ,}  + ( j l j ~ w ) ~  = 0 (2.19) 

CY Momentum Equation: 

7 Momentum Equation: 

,Ll Momentum Equation: 

Irrotationality Condition: 

Free-Surface Boundary Conditions ( at P = Y ): 

Channel Bed Boundary Condition: 

w ( a ,  Y,O, 5-1 = 0 



2.2 Perturbation Analysis 

A perturbation analysis in E is now developed for the flow equations 

in the curvilinear system. We expand each dependent variable in a power series 

in E as follows: 

These expansions are substituted into equations: (2.1 9)-(2.27) yielding: 





Perturbation equations are developed by collecting terms of identical 

order in E.  Thus, these equations reflect the relative significance of the flow 

shallowness. Beginning with the lowest order effect (eO), the continuity equation 

in conjunction with the channel bed boundary condition imply that 

The irrotationali ty conditions yield the relationship between the flow velocities 

u(O) , v(O) and depth 

where, 

Now consider the first-order perturbation effect. We obtain the continuity 

equation contribution 

Note that this can then be integrated with respect to P over the depth to yield: 

w'''(y) = '-[-" [: {(̂ ', "1)  log (f l (Y))  + K2l.(0)}] 

3 1 2  da 

-- " 1  - { ("I  , K 2  ) log ( j2(Y))  + r ly  lo) 
87 K2 11 



where, 

Substituting in the free-surface equation resulting from the terms of order E we 

obtain 

Now, the momentum equation for the normal direction when integrated with 

respect to /3 yields the zero-order perturbation pressure contribution, 

The terms within the first set of braces are the contribution to the pressure from 

the curvature "centrifugal" effect and the second set is simply the hydrostatic 

component. The momentum equation in the cr direction can be simplified by 

the realization that u;)  - ( $ ) 1  u ( O )  = 0 due to (2.40). This implies then, 

U ( ~ ) U ~ ~ )  v ( ~ ) u $ )  V 2 j 2  U ( ~ ) V ( ~ ) a j l  (0 )  
u p  + . +---- ra +--+---F=O (2.46) 

31 3 2  j l j 2  8~ 3 1 3 2  8-r 3 1  

and similarly for the y momentum equation, 



2.3 Generalized Shallow Water Equations 

We now transform back to dimensional forin and drop the pertur- 

bation index for convenience and find the equations given below. The mass 

conservation equation is derived from equation (2 .44 ) ,  the momentum equa- 

tions from equations (2.46 and 2.47),  the pressure from equation (2 .45 ) ,  and 

the vertical velocity from equation (2 .43) .  

j ( h )  j  ( h )  h  + [ { (  ) 1 0  1 - ~ 1 h )  + r l h ) ]  
as1 

+ [ { ( ) log ( 1  - r 2 h )  + r l h  
= 0 (2 .48 )  
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This system of equations can be used to solve for h, u, v, and P and, from 

this information, w, 

These equations represent the zero-order approximation for h ,  U, and 

v; and as such are only accurate when the flow is shallow relative to longitudinal 

and lateral features. This means that the water surface reasonably parallels 

the bed. This is true of all shallow water equations. The bed-normal velocity 

(equation 2.52) is the first-order representation of w, (the zero-order is that 

the bed normal velocity is identically zero). This is the condition reflected 

in the solutions of h, u, and v. The first-order approximation for w results 

from inferences drawn using the mass conservation equation. Its effects are not 

"felt" in these shallow water equations. Higher-order expansion terms would be 

necessary. It is important to keep in mind the limitations on these generalized 

shallow water equations. 



Chapter 3 

One-Dimensional Problem and Exploratory Studies 

3.1 Introduction 

Shallow water theory has been extensively studied both analytically 

and numerically for a wide class of free-surface flows. However, there have been 

relatively fewer shallow water studies of free-surface flows over curved beds such 

as those encountered in spillway designs. The curved bed case presents certain 

difficulties both analytically and numerically when compared with the flows 

usually encountered in shallow water calculations, since the pressure distribu- 

tion is now decidedly not hydrostatic. As an example, in flow over a spillway, 

the bed curvature produces an inertial acceleration and thereby an apparent 

force which is comparable in size to the hydrostatic pressure. The spillway ca- 

pacity therefore is strongly influenced by these curvature effects. In this chapter 

we first study the properties of the one-dimensional problem and develop a cor- 

responding finite element treatment. The associated numerical studies permit 

a preliminary study of the overall approach. This in turn is used to  guide the 

development of the final two-dimensional model and analysis in the following 

chapters. 

The main thrust of the present study is directed towards analysis and 

finite element approximation of this problem, including the influence of the 

curved bed. The analysis extends the approach of Dressler 1201 by means of 



a perturbation analysis leading to a new formulation of the problem (recall 

Chapter 2) and a generalized set of shallow water equations which includes 

bed curvature effects. In the limit of zero curvature the classical shallow water 

equations are recovered. The problem is complicated by the fact that there are 

possible transitions between subcritical and supercritical flows depending upon 

the local Froude number [27]. A further issue arises in the representation of 

the hydraulic jump which forms near the base of the spillway. This hydraulic 

jump enters as a discontinuity in the solution of the mathematical problem. 

As with standard shallow water theory, certain simplifying assump- 

tions also arise here implicitly from the perturbation analysis and the neglect 

of higher-order terms. The primary one is that accelerations normal to  the 

bed are nonexistent and thus the dispersive character of shorter wavelengths 

(in which wave speed depends upon wavelength) will not be represented. The 

resulting flow variables can only comprehend longer wavelengths in which wave 

speed depends upon water depth and, in this particular set of equations, bed 

curvature. The overall features of the hydraulic jump can be captured as weak 

solutions containing a discontinuity. However, once again, vertical accelera- 

tions and short period waves are not produced. A discussion of the equations 

and details of the jump representation are included in Sections 3.2 and 3.3. 

In the present treatment, an approximate formulation based on finite 

elements (Section 3.4) is constructed for the dominant perturbation terms in 

the solution to the curved bed problem. To accommodate the wave-like be- 

havior and produce a stable method, a special artificial viscosity formulation is 

employed. This form is motivated by the eigenvalue properties of the system 

and the existence of subcritical and supercritical regions. The resulting scheme 



introduces numerical dissipation in the discrete model. Partly as a consequence 

of this, the hydraulic jump is approximated over several elements but still does 

yield good agreement. Numerical experiments are conducted for a represen- 

tative problem corresponding to shallow water flow over a 'bump" (Section 

3.5). 

3.2 One-Dimensional Equations 

The perturbation analysis implies for mass conservation (by depth 

integration of (2.49) ) 

and for conservation of momentum (depth-integrated (2.50)) 

- J h  kuwds3 + j(h/2)gh sin 6 + gn2 I P I P  
Cj(h/2)h7j3 

= 0 (3-2) 

where the Manning equation is utilized to  account for friction and turbulence 

losses. Here, for notational convenience, we have set j for jl  and s for sl 

with p = Ch where C is the velocity at the bed surface, ss = 0. Further, 8 is 

the angle between the bed and the horizontal direction (see Figure 1.2), n is 

Manning's bed friction coefficient, and C is a conversion factor needed since n 

is not dimensionless, (1.0 for metric units and 2.21 for English units). 

Solution variables u and w now denote the zero-order and first-order 

perturbation contributions for the tangential and normal velocity components, 

respectively (the term w arises in the depth integration and can be written 



in terms of zero-order h and u, this is simply a convenience). The integral in 

equation (3.2) can be evaluated directly by substituting the known relation- 

ship for u over depth and including the relationship (2.52) for the first-order 

contribution to w. We have 

Since 

lim - 
K'O K. 

it follows that the terms involving curvature K in the denominator of (3.3) must 

remain bounded in the limit as K approaches zero. 

3.3 Discussion 

Observe that the pressure force is represented in equation (3.2) by 

where the first term can be associated with the centrifugal effects and the 

second is due to the hydrostatic pressure. Thus the pressure distribution is 

indeed not hydrostatic. 

Also note that if K = 0, these flow perturbation equations (3.1) and 

(3.2) reduce to 



which correspond to the shallow water equations in conservation form for the 

case where the channel slope is significant. If channel slope is not significant 

we recover the classical shallow water equations. 

The characteristic differential equations for the hyperbolic system 

(3.1)-(3.2) are 

with 

This implies that in this model wavespeed is independent of wavelength. That 

is, all wavelengths travel at the same speed, which depends on the depth, grav- 
. . 

itational and centripetal acceleration. A region of flow is considered subcritical 

if D1I2 < &, and if D112 > & it is supercritical. The set of equations 

describes flow in these regimes. However, the transition from supercritical to 

subcritical must occur through a hydraulic jump. This may be mathemati- 

cally characterized by a weak solution of (3.1)-(3.2) containing a discontinuity. 

The flow variables will not allow the production of vertical acceleration and 

short period waves associated with a jump, but the overall flow features can be 

preserved. 

The equations developed here model the total momentum flux through 

a cross-section whereas Dressler considers momentum flux per unit depth. In 

one dimension his approach corresponds to conserving mechanical energy. How- 

ever, in reality steep gradients in water surface elevation arise in the form of 



hydraulic jumps where (physically) mechanical energy is transformed to other 

forms of energy through flow turbulence, generation of short-waves, etc. [I]; 

this is apparent in Figure 1.1. Hence energy will not be conserved but momen- 

tum is conserved. In the mathematical treatment of the hydraulic jump the 

downstream (tailwater) elevation is prescribed and the preceeding observations 

then imply that the differences in the present formulation to that of Dressler 

would be manifest through the location of the hydraulic jump. The new model 

should predict a hydraulic jump location that is closer to the physical situa- 

tion. Since the hydraulic jump is an important feature of the flow from the 

standpoint of the engineering design problem, this distinction is important. 

Introducing the weighted residual projection in (3.1) and (3.2) against 

test function 4 and integrating by parts with respect to s ,  we obtain 

1 ( j ( h ) g ~  + q z )  ds - s4 isn = 0 

and 

h / R ( 4  - r + s ,  t ,  4 - 4 / o ruwdsr) ds + r4 Ian = 0 (3.11) 

where 52 is the domain, dfl is the boundary of 52, and 

4 = 
P log j (h)  

r h  
2 

p2 r = - ( )  + K [ + igh2 cos 6 

f = j ( ~ ) g h s i n ~ +  ~ j ( $ )  gn2 I P ~ P  h713 (3.12) 

The weak form of the transient problem (3.10) - (3.11) admits discontinuous 

solutions that model the actual hydraulic jump when the shallow water flow 



encounters the deeper water in the "stilling basin" downstream. Mathemati- 

cally this discontinuity arises from the "hard" downstream condition where the 

tailwater elevation is specified. Thus the solution to the weak problem may 

have a jump discontinuity in p and in h. 

Since we are primarily interested in the steady flow situation, let us 

consider the steady form of (3.10) - (3.11) for an arbitrarily small region R 

containing discontinuity point s with test function 4 zero on the boundary of 

R and outside R. Then, for conservation of mass (3.10) implies, in the limit 

as R -+ 0, [q] = 0 (where [q ]  denotes the jump in mass flux q at s). That 

is, mass is conserved through the hydraulic jump. For the transient problem a 

similar treatment applying the divergence theorem in (s, t )  yields the relation 

- j ( h ) [ h l $  = [q ]  for the speed of propagation of the discontinuity. 

In the case of zero curvature, K 0, the governing perturbation 

equations reduce to the farnilar shallow water equations. A similar analysis 

to that given above can then be applied to the momentum equation to yield 

[r]  = 0 for the steady-state problem and b]% = [r] for the transient problem. 

When K # 0, the presence of the term J) K U W ~ S ~  in (3.11) now provides a 

non-zero contribution for [r] at g .  In typical spillway applications, the bed is 

curved but the hydraulic jump occurs downstream in a region of zero curvature. 

3.4 Finite Element Approximation 

3.4.1 Choice of Basis 

Next, we consider approximate analysis of the weak statements in 

(3.10) and (3.1 1) on a discretization of finite elements. The underlying contin- 



uous problem is comprised of a first-order hyperbolic system in elevation and 

velocity variables. Discretization may give rise to spurious oscillatory modes 

in the shallow water problem. The presence and nature of spurious modes of 

wavelength 2As, where As is the mesh spacing, has been investigated previ- 

ously [46, 59). It has been shown for the linearized shallow water equations 

that piecewise-linear approximation of u with piecewise constant h does not 

generate an oscillatory mode. However, in the present analysis, the curvature 

terms preclude a piecewise-constant basis. A piecewise-quadratic basis for ve- 

locity with piecewise-linears for depth would be a logical choice but contain 

an oscillatory mode for velocity (not for depth). The nonlinear terms in many 

applications of the shallow water equations for rivers and estuaries are quite 

small. In our problem, however, the velocities are large and the gradients steep. 

Thus the nonlinearities are very important and selecting the basis to  exclude 

spurious modes for the linear equations does not ensure oscillations will not be 

generated by the nonlinear convective terms. 

The discontinuities in h and p a t  the hydraulic jump could be rep- 

resented exactly by means of a discontinuous finite element basis. In a non- 

dissipative formulation with standard elements "Gibbs type" oscillations will 

be generated a t  the jump. However, dissipation is present in the physical prob- 

lem and, as noted previously, this effect is significant in the neighborhood of 

the hydraulic jump. Accordingly, it is common practice to include an artifi- 

cial dissipation in the governing equations or a numerical dissipation arising 

from the discretization method. This added dissipation is active at the hy- 

draulic jump and effectively "smears" the jump over a few mesh intervals. The 

higher order dissipative term then implies that the upstream and downstream 



boundary conditions can now be consistently treated and the solution h, p to 

the dissipative equations is continuous. In turn, this implies that we can use 

standard C0 Lagrange basis functions in the finite element analysis. 

3.4.2 Artificial Dissipation 

The form for artificial dissipation was constructed based on one- 

dimensional convection diffusion models and such that, throughout the su- 

percritical reach, the coefficient closely matches the analytic wavespeed. Ac- 

cordingly, we add to (3.1) - (3.2) the dissipative operator 

where cr = pj(h)As in (3.1) and cr = PAS in (3.2), and P is a weighting 

parameter. Adding the dissipative term (3.13) to the pertubation equations 

(3.1), (3.2) and integrating by parts in the weighted residual condition the 

additional integrals in the weak statement (3.10) - (3.11) are, respectively, 

and 

This choice of dissipation is motivated by an analysis of the corre- 

sponding hyperbolic system for the one-dimensional spillway problem. The 

characteristic differential equations for the hyperbolic system (3.1) - (3.2) de- 

scribing the one-dimensional spillway problem are given by (3.9). The char- 

acteristic coordinates are obtained as the two families of solutions <(s , t )  = 



constant and ~ ( s ,  t) = constant of these characteristic equations. In the spe- 

cial case of K = 0 the linearized shallow water equations are obtained and the 

characteristic differentia1 equations (3.9) reduce to 

The governing wave equation simplifies in the characteristic frame and, in 

the linear case (3.15), disturbances propagate unchanged along the respec- 

tive straight-line characteristics. For the nonlinear problem of interest here 

the characteristics are curved. When characteristics of the same family inter- 

sect to form a caustic, discontinuities may be generated in the solution. This 

is precisely the situation in the present case: for supercritical flow "positive7' 

characteristics intersect and the difference between the upstream disturbance 

(which is being convected downstream) and the downstream boundary condi- 

tion is resolved through the hydraulic jump. That is, the specified tailwater 

in the stilling basin forces subcritical conditions downstream while supercriti- 

cal flow exists upstream, and the hydraulic jump is formed as a result of this 

interaction. 

If dissipation is introduced in the mathematical model, then the equa- 

tions are second-order and change type. The upstream and downstream condi- 

tions then can be accommodated by a smooth solution to the governing (mod- 

ified) equation. The result of adding moderate local dissipation is that nu- 

merical oscillations are suppressed in the subsequent approximate solution but 

the sharp jump is less well resolved. If the local dissipation is small there will 

be only slight "smearing". This dissipative behavior is, at least qualitatively, 

consistent with the real physical process. This issue notwithstanding, there are 



several other difficulties that arise when the discrete model is considered. Of 

course, the discrete representation should reflect the qualitative behavior of the 

continuous mathematical problem. Moreover, the approximate solution should 

converge in the appropriate norms as mesh size and time step are reduced. 

Our concern here is to have realistic model results, even near the hydraulic 

jump where the effect of the ''hardV downstream boundary condition tends to 

promote oscillations and spurious "modes". 

To demonstrate the nature of the problem, let us turn to the fre- 

quently studied steady convection-diffusion problem. We intend to clarify the 

questions related to modes and oscillations associated with conflicting end con- 

ditions, such as those for the hydraulic jump in the spillway problem. The 

model equation is 

with c(0) = 0 and c(1) = 1. Here 6 represents an artificial diffusivity with 

0 < t: << 1. The solution to (3.16) is essentially zero in the upstream region 

and rises abruptly through a boundary layer to satisfy c = 1 at the downstream 

end. 

Introducing a standard Galerkin finite element method with linear 

elements (or equivalently using central differencing), at interior node i we have 

For the degenerate limiting case E -+ 0 the differential equation (3.16) reduces 

to dcldx = 0 so c = constant is the solution. In the present case we have c = 0 

if the left condition is to be satisfied and c = 1 if the right end condition is 



chosen. This degenerate form of (3.16) is of lower order and clearly is over- 

specified. The corresponding degenerate form of the non-dissipative discrete 

problem (3.17) with E = 0 presents an entirely different situation. We then 

have simply c ; + ~  - c,-1 = 0. Setting c; = pi, the solution to this second order 

difference equation satisfies - pi-' = 0, that is, p = f 1. Hence the general 

solution to the discrete problem is c; = A + B(-1)' where constants A, B are 

determined from the boundary conditions. If B = 0 then the discrete model 

corresponds to the first order continuous problem and A is given by the end 

conditions. Even if B is small, however, there will be a superposed inter-node 

oscillation of amplitude B. This internode oscillation of wavelength 2As then 

represents a spurious mode resulting from the second-order approximation of 

the first order operator. The amplitude B of the oscillation will evidently 

depend upon the "inconsistency" of the boundary conditions. In the present. 

case, if c(0) = c(1) then B is zero and the oscillation will not be forced; for 

c(0) = O,c(l) = 1 we see that there is an oscillation of unit amplitude forced 

in the numerical solution. 

Addition of artificial dissipation returns the forms in (3.16) and (3.17) 

with c # 0 and a standard Fourier analysis reveals that oscillations can be 

eliminated provided 

E ~ $ u o ~ ~  , u o > ~  (3.18) 

which yields the familiar cell Reynolds or Peclet condition. 

The particular choice of artificial dissipation employed in the present 

work can be motivated or interpreted physically as follows. First note that the 

coefficient of the artificial viscosity is specified in (3.13) as the net transport 



rate G / [ j ( h ) j 2 .  This reduces to uo for the standard shallow water equations 

which then become 

Introducing a finite element approximation with a linear basis the roots of the 

"indicial" equation for the discrete difference form are 

All of these roots will remain positive if 

and numerical oscillations excited by the hydraulic jump will be damped. More- 

over, if we choose a to be proportional to As, this condition will remain en- 

forced as the mesh size As is reduced. The artificial dissipation will be reduced 

proportionally with As and the resolution of the jump will improve. Since the 

jump is a major source of oscillation, the local damping will improve the global 

behavior of the approximate solution. 

While this analysis has focused upon the linear case, the nonlinear 

terms can also cause internode oscillations. Aliasing into lower wavelengths 

from these internode oscillations will also occur. Since the artificial diffusion 

terms will preferentially damp short wavelength oscillations the nonlinear in- 

duced oscillations should be moderated by this mechanism. 



3.4.3 Finite Element Approximation 

Introducing finite element expansions for h and p in the weak state- 

ments then yields the discretized equations 

for the continuity equation, and 

for the momentum equation, where 



3.5 Model Results 

Model simulations were conducted using bed topography from the 

numerical and flume studies of Sivakumaran [51j. This bed form is given by 

Z = .20e[-*(*)~] where z is the horizontal distance in meters from the ten- 

ter of the crest and Z is the elevation in meters. That is, this spillway bed 

geometry has the form of a normal distribution symmetric about x = 0, with 

a crest elevation of 0.20m. In the present numerical experiments, values of 

discharge are specified upstream and the tailwater elevation downstream. The 

flow capacity of the spillway, as indicated by the upstream water surface eleva- 

tion is, therefore, calculated by the approximate model as a steady-state, from 

which the predicted flow capacity can be compared with Sivakumaran's flume 



results. The same test is repeated with the curvature-related terms removed. 

This yields the shallow water model (with channel steepness included), which 

can be used for comparison purposes to determine the effect of curvature. 

One should note that the flume data of Sivakumaran does not contain 

a noticeable jump since the tailwater elevation is too low. However, in the 

present test a higher tailwater is specified to evaluate the suitability of our 

numerical scheme to simulate the jump and control the associated oscillations. 

The location of the jump can vary widely for slight changes in velocity and 

depth. This sensitivity is reduced in real physical flows by the presence of 

friction which causes a steeper water surface slope. Friction in this model 

is included by Manning's expression with friction factor 0.016 corrected for 

curvature 1211. The results of test calculations are shown in Figures 3.1 - 3.3 

for flows with an upstream discharge of 0.03599m3/s/m and a downstream 

depth (tailwater) O.lm, using a mesh with 46 linear elements. Higher grid 

resolution is required upstream of the spillway crest where there are steep 

variations in flow variables. Along the downstream side of the spillway the 

depth changes gradually and fewer elements are required. The semi-discrete 

system is integrated numerically to a steady-state with a fixed timestep At = 

0.05 sec using an implicit scheme. 

The depth-averaged velocity is given in Figure 3.1. Both the velocity 

and its spatial variation are relatively small upstream of the crest which con- 

firms that the effect of the nonlinear terms is not significant here. Downstream 

of the crest, the velocity is large and a small perturbation in depth imposed 

upon this region will develop large velocity variations to conserve mass. If 

dissipation is not sufficiently large, the jump excites oscillations and a nonlin- 
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Figure 3.1: Average velocity profile - effect of curvature terms. 

ear instability develops. In the calculations shown here, the coefficient P for 

dissipation was set at 0.5 downstream and 0.25 upstream. 

The bed pressure ratio profile is shown in Figure 3.2. This is the ratio 

of the pressure associated with centrifugal effects to hydrostatic pressure alone. 

Throughout the region in which the bed is convex, -0.24 < x < 0.24, an uplift 

is evident, reaching a maximum of 0.36 a distance 0.10m downstream of the 

crest. In the concave portion of the downstream bed the pressure gradually 

increases and reaches 0.55 near the "toe" of the spillway. It is apparent that 

the pressure distribution is definitely not hydrostatic. 

Included in Figures 3.1 and 3.3 are dashed lines indicating the model 

results when the curvature is set to be identically zero. This corresponds to the 
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Figure 3.2: Pressure ratio profile - centrifugal/hydrostatic pressure. 

standard shallow water result for a steep slope. Of particular importance is the 

observation that the shallow water equations predict a higher upstream water 

surface elevation to  allow this discharge to pass over the spillway. That is, the 

shallow water equations predict a lower spillway capacity than the equations 

including curvature. 

The capacity of the spillway is directly related to the energy required 
2 

to pass a particular flow rate. The specific energy, defined by E G (&) + 
Z,, is the mechanical energy from the Bernoulli expression referenced to the 

datum of the crest elevation. Here (A) is the surface velocity and 2,. is the 

water surface elevation above the crest. The specific energy indicated by the 

flume was 0.072m. The numerical model results were 0.083m for the steep-slope 

standard shallow water equation and 0.072m for the model including curvature. 
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Figure 3.3: Water surface profile - effect of curvature terms. 

Downstream of the crest, the calculated water surface for the shallow 

water equations is slightly steeper than the results with curvature included 

and the flow becomes progressively more shallow. This is more easily seen in 

the velocity plot, where excluding curvature produces velocities that are too 

large. In the concave region this effect is reversed and the velocity predicted 

by the steep-slope shallow water equation drops below that of the model with 

curvature effects included. More energy is needed to pass this discharge and the 

effective loss of energy downstream of the crest causes the predicted location of 

the jump to move upstream as compared to the results with curvature included. 

The discrepancy in upstream results from the two models is not at- 

tributable to centrifugal effects as they are not significant. This behavior is due 

to the bed-normal measurement of depth. In a concave region the bed-normal 



directions at the ends of differential segment converge as one moves away from 

the bed, so that the differential volume per unit width is smaller than would 

be calculated by simply multiplying the depth and length along the bed. The 

volume (volume per unit width) calculations will be too large in the concave re- 

gions and small in the convex regions. Thus in the concave regions the standard 

equations require a larger pressure variation for the flow acceleration. Down- 

stream of the crest this effect is smaller as the depth is shallow and the water 

surface is nearly parallel to the bed, Here the centrifugal forces become more 

important. Results including curvature effects show a slightly less steep water 

surface slope as a result of the adverse centrifugal pressure gradient. Down- 

stream of location 0.4m the centrifugal pressure gradient is positive, and the 

results with curvature included predict a flatter water surface slope. This in 

turn moves the jump downstream. Note that both of these model equations 

are written for bed-fitted coordinates. The St. Venant equations on the other 

hand are written for momentum and mass conservation horizontally and as 

such offer a much poorer comparison on the spillway section [21]. 

The capability of the model to treat the hydraulic jump is also re- 

vealed in these results. The effect of mesh refinement is examined in Figure 

3.4. A graded mesh with elements of size 0.05m near the jump was halved and 

the computation repeated. Since the local artificial dissipation is proportional 

to mesh spacing the dissipation is reduced accordingly. In both instances, the 

jump occurs over three elements and, of course, the steepness of the approx- 

imation to the jump improves as the mesh is refined. There is little spatial 

oscillation. 
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Figure 3.4: Water surface profile - effect of refinement. 

3.6 Conclusions 

The finite element model described here results from a shallow water 

perturbation analysis including bed curvature. In the event that the curvature 

is assumed to be identically zero, the model degenerates to the standard shallow 

water equations (without the mild-slope assumption). By computing the flow 

over a "bump" composed of a bed of continuous curvature for which flume 

results were available we observe that: 

1. The full equation model yields an accurate prediction of the reservoir ele- 

vation (and thus spillway capacity) while the results excluding curvature 

effects are much poorer 



2. The results excluding curvature effects compare quite closely with the 

more complete model along the supercritical spillway face. However, 

subtle differences are sufficient to significantly shift the predicted location 

of the hydraulic jump. 

3. The resolution of the jump in this model is spread over 2 or 3 elements. 

Thus the steepness of the jump can be improved by grid refinement 

(within the limits imposed by nonlinear effects). 

In the next chapter we utilize these results to extend the formulation to a 

two-dimensional model. 



Chapter 4 

Model Extensions 

4.1 Introduction 

The complexity of the flow is more evident in two dimensions. The 

lateral distribution of flow and oblique standing waves can be reproduced. In 

the subcritical case a boundary disturbance propagates both downstream and 

upstream and so the shallow water equations cannot produce a standing wave 

here. In the supercritical region a boundary disturbance is swept downstream 

forming a standing wave or wake. The fluid velocity is greater than the speed 

of the free-surface wave celerity. Poor approach conditions result in standing 

waves within the spillway apron section. The concentration of flow in nar- 

row regions can cause circulation and subsequent damage downstream. These 

problems can be relieved with improved flow training using well designed abut- 

ments. The flow features must be modeled to assess the design, requiring a 

model with both longitudinal and lateral resolution. 

This chapter is concerned with the development of a finite element 

model that can reasonably address these conditions and the nonhydrostatic in- 

fluences. Section 4.2 details the development of an improved convection scheme, 

4.3 the depth-integrated equations, 4.4 is the application of the convection equa- 

tion to these equations, and Sections 4.5 and 4.6 the viscous stresses and bed 

drag, respectively. 



4.2 Finite Element Treatment - Convection Scheme 

The focus of this investigation is on the curvilinear formulation, but 

an adequate system to address oscillation control is necessary to make this 

calculation. As discussed in the previous chapter on the finite element approx- 

imation of the one-dimensional problem, we must be concerned with possible 

oscillations resulting from both spurious modes and nonlinear effects. An arti- 

ficial diffusion method was successfully introduced in Section 3.4.2, where the 

added dissipation was developed based on physical arguments. This system, 

while sufficient for of the one-dimensional equations in preliminary tests, is too 

simplistic for the eventual two-dimensional model. We now present a more 

complex form for two-dimensional analysis. 

Some recent finite element approaches for the shallow water equations 

include the Taylor weak form (Baker and Iannelli [4]) and the Petrov Galerkin 

scheme (Katopodes [33]) which, in actual application, are almost identical (see 

also [5, 3, 341). We will illustrate the basic ideas for the Taylor weak form and 

demonstrate a further improvement for our problem class. 

Baker's model is based upon the work of Donea [19], Raymond and 

Garder [47] as well as Lohner, Morgan and Zienkiewicz [42] . The derivation can 

be clearly demonstrated using the one-dimensional model transport equation 

The nonconservative form is given by 

where, A = . Expanding c in a Taylor series in time we obtain 



where, the superscript indicates the time step, i.e., t = mAt. Motivated by 

the well known Lax-Wendroff approach in finite differences, we may utilize 

relationships derived from ( 4.1) 

and 

with a1, parameters. Following the Raymond and Garder scheme Baker 

and Ianelli [4] choose a combination of (4.5) and (4.6) with a* = a2 = a. The 

associated modified equation is 

Katopodes [33] arrives a t  essentially the same result via the Petrov 

Galerkin approach. The test function is modified to include derivatives of the 

Galerkin test function 4 as 

where, $ is the new test function and a is a parameter with unit of l/time. 

Using ( 4.7) in the weighted residual statement for ( 4.1 ), 



where, 0 is the domain and 80 is the boundary. This is similar to the form 

proposed by Dendy [18] and is based upon the Streamline Upwind Petrov 

Galerkin (SUPG) scheme of Hughes and Brooks [29]. 

In actual application of this method to the shallow water equations 

some deficiencies are apparent. The primary problem, for the hydrodynamic 

conditions we wish to simulate, is that the dissipative mechanism incorporated 

in this method is nonexistent near critical flow conditions; i.e., where the flow 

undergoes transition from subcritical to supercritical flow, or vice versa. This 

allows oscillations to gather a t  the spillway crest or near a jump. The standard 

one-dimensional shallow water equations illustrate this point. 

These shallow water equations in nonconservative form may be writ- 

ten 

where, 

Now, applying the Petrov Galerkin approach to (4.9) and discretizing we obtain 

the corresponding finite element problem. It is instructive to examine the 

linearized steady problem for A = constant, A. Then the discrete system on 

a patch at node j becomes 



where, 

where we assume the numerical solution 

j is a nodal index and ( A ) above a variable indicates the amplitude. (These 

operators are similar to centered difference operators for first and second deriva- 

tives.) We may simplify the system by defining P such that 

where, 

Here XI and A2 are the eigenvalues of A, ii and 2. are the constant values of 

velocity and celerity that form A, and P and P-' are made up of the right and 

left eigenvectors of A. We find 



Equation (4.10) may be written as 

or after simplification 
1 
-PSQ - ~ A P S ~ Q  = 0 
2 

The equation set for each patch will then be 

For nontrivial solutions of k and f i  to exist, the determinant of the coefficient 

matrix must equal zero 

from which we have the roots 

The value 1 is a multiple root and is the correct solution; i.e., the correct 

solution for a single boundary condition is that the velocity and depth are 

constants; the other values of p are spurious numerical roots. If these spurious 

roots are negative, a node-to-node oscillation may develop. The value of a that 

eIirninates negative roots is 

If JA21 is very small, as one would expect near a spillway crest (assuming u > O), 

a would have to be quite large. This is indeed what happens when applying this 

method. The term a  has units of l/velocity. Katopodes suggests u = E&, 



where E is a nondimensional coefficient [33]. This again does not scale the 

weighting of the Petrov Galerkin test function properly for each characteristic 

and oscillations can occur in this linearized example. 

Instead we propose that the test function be modified so that it is 

scaled by each characteristic magnitude. We define the new test function as 

where, 

The result for the discrete model on a patch then is approximately 

and to prevent oscillations 

This method provides an upwinded Petrov Galerkin test function that is scaled 

for each characteristic and can provide oscillation control at all Froude num- 

bers. We will substitute CY = €As ,where e is a nondimensional parameter, 

in the model so that we need not input values dependent on element lengths. 

This method is a variation on the theme proposed by Courant, Isaacson, and 

Rees [15] for one-sided finite differences. These ideas were expanded to more 

general problems by Moretti [45], Chakravarthy (111, and Gabutti [25] as split- 

coefficient matrix methods and by the generalized flux vector splitting proposed 



by Steger and Warming [55) .  These one-sided differences based upon character- 

istic directions provide dissipation and therefore stability. The incorporation 

here is more subtle using a modification of the test function; also the degree to 

which the dissipation is apparent is controlled via the parameter r instead of a 

totally one-side difference. 

This approach is now extended to the two-dimensional case. We will 

use the condition of zero curvature in deriving our test function. This is sig- 

nificantly simpler than including curvature and can be justified on physical 

grounds. The shallow water equations (with and t not identically equal to 

1) are 

where, 

H represents the additional terms which are not associated with the material 

derivative or pressure, and g3 is the gravitational component in the bed-normal 

direction. 



The test function we propose is 

where, 

A = P-'AP 
X1 0 0 

0 0 A3 

U  
X1 = - 

C1 

u + c  
X2 = - 

C1 
U - C  

As in the one-dimensional case, X1,X2, and X3 are the eigenvalues of A? and P 

and P-' are made up of the right and left eigenvectors. 

Similarly, in the s2 direction we have: 



The terms r ,  R, and R-' in the s2 direction are analogous to the relationship 

of A, P, and P-' in the sl direction. 

4.3 Model Equations 

The depth-integrated version of the momentum equations (2.58) is of 

some advantage in handling non-smooth conditions. The weak form solution 

for the no-curvature condition that one would encounter downstream of the 

spillway can be made to properly conserve momentum and mass through the 

jump. Other forms of the equations will not. In the case in which there is bed 

curvature, as we discussed in Section 3.3, these equations will contain additional 

terms due to the bed curvature which while finite through the jump will make an 

additional contribution that can cause an error in the jump location. Therefore 

in the vicinity of the jump these equations, which properly conserve mass and 

momentum for the no-curvature case, will only precisely conserve mass in the 



curved bed state. Generally, in practical cases the strong jump is restricted to  

the region downstream of the spillway face where the bed contains no curvature. 

These equations then are 

where, 

and the nonhomogeneous term 

where. 



With the coefficients a; , bi, and c; resulting from depth integration: 



h  

a8 = / s3 
d s 3  

0  f l ( 3 3 )  f 2  ( ~ 3 )  

lS3 -dtdz 
O ( f l ( ~ 3 ) ) ~  

a 1 0  = 

h 1  

h 1  
a 1 2  = / 

h 1  

a 1 4  = lh I / p 3  c f l ( ~ ) d t d s 3  
0 ( f l ( ~ 3 ) ) ~  0  ( f 2  ( < ) I 2  
1 

C I  = - [('l 
' l )  log f l  ( h )  + 41 ' 1  h 

1 
c 2  = - [('I n l K 2 )  log f 2  ( h )  + k lh]  

' 2 h  

For the coefficients b; simply swap the subscripts 1 and 2 in the ' 1  and ' 2  and 

f l  and f 2  terms of a;. 

4.4 Application to Generalized Equations 

The Petrov Galerkin formulation incorporates a combination of the 

Galerkin test function and a non-Galerkin component to control oscillations 

due to  convection. The test function is that of equation (4.24) for the zero- 

curvature case, and involves bed velocities ii and 6. 

The weighted residual statement becomes: 



where, nl and n2 are the components of the outward normal vector to the 

boundary. 

The perturbation partial differential system defines a hyperbolic ini- 

tial boundary value problem. We determine the appropriate boundary condi- 

tions relying upon the approach of Daubert and Graffe [17] and the discussions 

of Drolet and Gray 1231 and Verboom et. al. [58]. Daubert and Graffe use 

the method of characteristics for this determination. The theory shows that 

the number of boundary conditions is equal to the number of characteristic 

half planes that originate exterior to the domain and which enter it. There 

are two families of characteristic surfaces at a point (sl,, sZ0, to). The first is a 

cone which slopes in the direction of flow and has a radius of the wave celerity 

multiplied by time. This generates the ring formed on the free-surface by a 

disturbance. The second is a plane which intersects the axis of the cone and 

represents the flow velocity. If a characteristic plane outside our domain inter- 

sects the boundary then the flow field inside the domain is influenced by the 

outside information which we must provide as a boundary condition. On the 

other hand, if the characteristic plane intersects the boundary from inside the 

domain, this is information leaving the domain and no boundary condition is 

needed. Physically, the first family is tracking a free-surface disturbance and 

the second is tracking a fluid element. Table 4.1 relates the number of bound- 

ary conditions to the direction of flow for sub- or supercritical flow conditions, 

u, is the velocity component normal to the boundary. 

The boundary conditions we implement in this model are: 



Table 4.1: Number of boundary conditions required. 

0 A slip flow boundary a t  a solid wall is common in shallow water ap- 

plications. This corresponds to the condition u, = 0 in Table 4.1. The 

boundary condition in the mode1 is imposed through the weak statement. 

The implementation is as follows: 

Mass Conservation Equation 

Supercritical Flow 
3 
0 
1 

Flow direction 
u, < 0 (inward flow) 
u, > 0 (outward flow) 
u, = 0 (no flow) , 

sl Momentum Equation 

Subcritical Flow 
2 
1 
1 

s2 Momentum Equation 

The upstream boundary condition is an essential boundary. If the flow 

here is subcritical then the flow components are specified as either ii and 

6 or p and q. If the flow is supercritical the depth is also specified. 

The downstream boundary condition is unspecified if the flow is supercrit- 

ical there. If the flow is subcritical the depth is specified by substituting 

the specified depth in the boundary integral terms of the momentum 

equations. 



4.5 Viscous Stress 

The viscous stress is of less importance in the calculation of the free- 

surface except as the flow passes through the hydraulic jump. The contribution 

is small when the flow is smooth. We base our stress calculation upon the 

velocity and metric gradients at the bed, in this way we do not produce a 

lateral or longitudinal stress by our assumed vertical velocity profile. The 

stresses (see Boresi and Chong [8] ) then are: 

The first subscript indicates the face upon which the stress acts and the second 

is its direction. When applied to our numerical system we obtain the following 

additional contributions: 

sl Momentum Equation Contribution: 

1 ad, 

s2 Momentum Equation Contribution: 

These contributions are made to the left hand side of equation (4.26). The 

stress jump across interelement boundaries is set to zero and along the domain 

edge a stress-free boundary is assumed. 



As an estimate of these turbulent eddy viscosities generated by the 

bottom friction, we use an empirical formula [49, 121 

where, ut is the turbulent viscosity, CB is a coefficient that varies between 0.1 

and 1.0, and f is the Darcy-Weisbach friction coefficient (see e.g. King and 

Brater [36]). The turbulent contribution to viscosity is generally much larger 

than the molecular viscosity. 

4.6 Bed Drag 

We adopt the common practise in hydraulic engineering of using an 

empirical relationship developed by Manning and extended to curved beds in 

one dimension by Dressler and Yevjevich [21]. We shall extend this to tw; 

dimensions. The original approach uses the Chezy coefficient, Ch, defined for 

steady flow and for determination of the average flow over a cross section. In 

the "fully rough'' regime, the bed stress may be defined by a b e d  = -Apu2, where 

A and Ch are functions of the size of the flow channel and the bed roughness 

and independent of Reynolds number and so the Manning's relationship is 

applicable. The term a b e d  will be the bed drag force addition to equation 

(4.26). Here we apply Manning's relationship of A = gn2 where R is the 2' 
hydraulic radius (ratio of cross-sectional area to wetted perimeter) and n is 

Manning's coefficient. 

We shaIl demonstrate the derivation of the force terms for the sl 

momentum equation. Consider the infinitesimal volume in Figure 4.1. The 



Figure 4.1: Infinitesimal volume for calculation of bed drag force. 

bed surface area is 

A = ClC2AslAs2 

so the total bed drag force is given by 

The corresponding volume is 

and the force per unit volume then is 

The hydraulic radius may be approximated by 

Therefore, the force per unit mass as it appears on the right hand side of the 

sl momentum equation becomes: 



and similarly for the s2 momentum equation: 

Once again, these terms will appear as additions in (4.26) for the bed drag 

force. 

4.7 Model Description 

The finite element approximation for equation (4.26 ) becomes: 

+ f ( f i a n l +  lVbn2) dl]  = 0 
anenan 

where, the symbol " indicates the discrete value of the quantity and the sub- 

script indicates a particular test function. The geometry and flow variables are 

represented using the finite element basis; e.g., 

and the function cp, is defined as 

We use quadrilateral bilinear elements with nodes at the element cor- 

ners, the local element coordinates are shown (see e.g. 161) in Figure 4.2. The 



Figure 4.2: Local bilinear element. 

grid intervals Asl and As2 in the physical domain are chosen in the same 

manner as Katopodes [33]: 

From Taylor series arguments, the temporal derivative may be repre- 

sented as 
~ 3 "  - Qs Q; - Q;-' a ~ ; + '  

+ ( l - d  At -- 
- at 

7j (4.46) 
At 

where, the subscript j indicates a particular node location, the superscript 

indicates the time step, and 7j indicates the truncation error, 



If y = this defines a second-order backward difference in time; if y = 1  the 

standard first-order backward difference is obtained (both schemes are uncon- 

ditionally stable for the linear problem). 

We address the nonlinearities in equation (4.44) by using the Newton 

Raphson technique (see [9]). The residual R, for a particular test function $i 

in each set of equations is forced toward zero by the iteration: for k = 1 , 2 , .  . . 

solve the Jacobian system 

where k indicates the iteration, i is the test function index and j is the nodal 

index. 

Equation (4.48) represents a system of linear algebraic equations that 

must be solved for each iteration and time step. A LLProfile" solver incorporates 

efficient coefficient matrix storage and is implemented in the present study. In 

this method the upper triangular portion of the coefficient matrix is stored by 

columns and the lower by rows. The zeros outside the profile are not stored or 

involved in computation. The necessary arrays are then a vector comprised of 

the columns of the upper triangular portion of the coefficient matrix, another 

for the rows of the lower portion, and a pointer vector to locate the diago- 

nal entries. Triangular decomposition of the coefficient matrix is used in a 

direct solution. The program to construct the triangular decomposition of the 

coefficient matrix uses a compact Crout variation of Gauss elimination. 



Chapter 5 

Validation and Practical Simulation 

Numerical tests are conducted in two stages. In Section 5.1 we make 

validation tests against several standard benchmark cases. Then in Section 

5.2 we demonstrate the model's capability to predict actual flow conditions. 

Here we make comparisons to flume results and compare these results to  those 

predicted using other shallow water equation models of approximately the same 

computational complexity. 

5.1 Model Validat ion 

Several simple cases with analytic solutions are first considered to 

validate the scheme and program. The basis of these is the Bernoulli Equation 

written along the water surface. For smooth solutions with no dissipation, 

energy along a streamline should be constant. The Bernoulli equation along 

the water surface may be written: 

where, 

Em = mechanical energy (in units of length, e.g. ft-lbs per lb of water) 

z, = water surface elevation 

v, = velocity magnitude at the water surface 



In testing the precision of the model we define the error in terms of deviation 

from a constant mechanical energy as follows: 

So that E, is the average mechanical energy and )IE,II represents an error in 

terms of mechanical energy. 

5.1.1 Constant Curvature. 

The first test is for a constant curvature. These tests are conducted 

for constant curvature in the sl direction with no curvature in the 32 direction, 

and then for constant curvature in the s2 direction with no curvature in the sl 

direction. All tests are with straight walls for both supercritical and subcritical 

conditions. 

The radius of curvature chosen is 30m, and the channel length is 20m 

divided into elements of length lm. The width is 4m divided into lm  wide 

elements. In addition to the error in mechanical energy, we plot the depth and 

bed velocity along the channel centerline compared to the analytic solution for 

the calculated average energy. We show these plots for flow in the sl direction; 

the s2 plots were indistinguishable from the sl results. 

The subcritical test conditions are shown in Table 5.1. For subcritical 

flow two upstream boundary conditions and one downstream boundary condi- 

tion are specified. Typically p and q are given upstream and water surface 



Table 5.1: Circular channel, subcritical flow 

Table 5.2: Circular channel subcritical flow results. 

elevation downstream. The results of the model run a t  the end of the simula- 

tion are shown in Table 5.2. The mechanical energy in the model is very close 

to a constant. For subcritical flow the energy should be close to  the variation 

in elevation, so it is apparent that the error in elevation is less than 0.001m. 

A plot of the centerline profiles of bed velocity and water surface is shown 

in Figure 5.1. The water surface dips over the crest as one would expect for 

subcritical flow and, of course, the velocity is a maximum there. A comparison 
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Figure 5.1: Circular channel, subcritical flow: bed velocity and water surface 
elevation. 
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Figure 5.2: Circular channel, subcritical flow: comparison of depth from model 
with analytic solution. 

between the numerical model and analytic results is shown in the two subse- 

quent figures. Figure 5.2 provides a comparison of depths and Figure 5.3 is for 

bed velocity. The comparison is extremely close, and since the energy error is 

small we know the comparison over width is also good. 

The test for supercritical flow considers the treatment and effect of 

the downstream boundary. Since the flow is supercritical at this boundary no 

condition is specified. The upper portion is subcritical so that only p and q 

must be specified upstream. The flow changes to supercritical near the crest. 

The water surface rises or falls from initial data to the level a t  which the 

steady-state discharge can be maintained. 

The downstream depth is calculated by the model and as a result is 
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Figure 5.3: Circular channel, subcritical Aow: comparison of the bed velocity 
from the model with analytic solution. 



Table 5.3: Circular channel, supercritical flow. 

Table 5.4: Circular channel supercritical flow results. 

somewhat less stable so the time step is reduced accordingly. Table 5.3 shows 

the input parameters for the calculation. 

The error compared with Bernoulli's equation is shown in Table 5.4. 

As expected the error is greater than for the subcritical case but it is still 

relatively small. 

The actual flow centerline profiles are shown in Figure 5.4. The water 

depth decreases until it becomes supercritical near the crest. The bed velocity 

is nearly 7m/s a t  the downstream boundary. The comparison to the analytic 
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Figure 5.4: Circular channel, supercritical flow: bed velocity and water surface 
elevation profiles. 

result is shown in Figures 5.5-5.6. Once again, the model yields results very 

close to the analytic solution. 

5.1.2 Variable Curvature. 

For a more general test we consider a variable curvature case. Specif- 

ically, we return to the flume geometry of Sivakumaran [51, 52, 531 given by 

Z = 0.20e[-i(%)~], where z is the horizontal distance and Z is the elevation. 

The test input parameters are shown in Table 5.5. The simulated flume con- 

tains 245 nodes and 192 elements. The lateral resolution consists of 4 elements 

of width 0.05rn. Longitudinally, the resolution is concentrated just upstream of 

the crest, where the greatest variation in depth occurs. The minimum element 



Figure 5.5: Circular channel, supercritical flow: comparison of depth from 
model with analytic solution. 
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Table 5.5: Variable curvature flume. 
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Figure 5.6: Circular channel, supercritical flow: comparison of the bed velocity 
from the model with analytic solution. 



Table 5.6: Variable curvature flow results. 

length is 0.02m and the maximum is 0.05m. With a 0.05 second timestep a 

free-surface wave can traverse about 3 or 4 of the smallest elements in a single 

timestep; i.e., the equivalent CFL number [14] is about 3 or 4. Our initial solu- 

tion is a fairly poor description of the steady solution so the starting timestep 

is 0.02 seconds. After 2 seconds of simulation it was increased to  0.05. The 

results of the simulation are shown in Table 5.6. 

The ratio \(E,IJ/E, for the variable curvature case is between 0.00108 

and 0.00146 compared to the supercritical constant curvature result of about 

0.00274 and subcritical result of 0.000390. Thus, the variable curvature is no 

worse than for supercritical flow over a constant curvature. The significant 

difference is in comparison to subcritical flow. Supercritical flow by nature 

is less regular and the results with the model reflect this. These validation 

studies confirm that the model accurately approximates the stated differential 

equations. We now apply the model to more realistic practical flow studies. 

5.2 Comparison to Physical Measurements in Flumes 

The first test contains no bed curvature, but is a supercritical transi- 

tion in which the disturbances at the wall propagate across the flume. This is 

a good test of the numerical scheme and boundary condition implementation. 
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Figure 5.7: Flume geometry: supercritical transition. 

We next compare results for our generalized set of shallow water equations, the 

standard steep-slope shallow water equations, and the St. Venant equations of 

a spillway form against data collected by Sivakumaran [51]. These methods are 

all of about the same computational effort. The data set includes bed pressures 

and water surface elevations. The final test is of an outletworks flume that is 

supercritical throughout containing bed curvature and lateral transitions. This 

is the most general case that we will test. In all comparisons, model resolution 

is refined until no significant change results from additional refinement. 

5.2.1 Supercritical Transition. 

The flume data, for this test, are reported in Ippen and Dawson [31]. 

The flume narrows from 2ft to lft wide using two equal radius circular arcs 

as shown in Figure 5.7. The numerical representation of this flume extends 
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Figure 5.8: Computational grid, supercritical transition. 

upstream 20ft from the start of the curve and downstream below the transition 

by about 30ft. The extension upstream is to allow the model to reach uniform 

flow before the transition and downstream to make sure the boundary condition 

does not influence the calculations in the area of interest. These long extensions 

are actually overly cautious. The numerical grid is composed of 4585 nodes 

and 4314 elements with a maximum length of lft  and a minimum of 0.06ft. 

Laterally the channel is broken into 20 elements in the area of interest and near 

the upstream and downstream boundaries only 6 elements. The numerical grid 

in the transition area is shown in Figure 5.8. Other model input parameters 

are shown in Table 5.7. The bed slope and roughness are chosen to provide 

uniform flow approaching the transition. The flow conditions are more difficult 

than in the previous test and the value of c was increased to 0.10 to maintain 

stability. The value of vt is chosen to correspond to CB = 0.4, see equation 



Table 5.7: Supercritical transition. 

I I n ~ u t  Parameters 

At I 0.03sec 
Simulation Time I 500sec 

L 

Iterations 2 
€ 0.10 

I 

bed slope I 0.0125 

Boundary Conditions 
Upstream I 

(4.35). The amplitude of the standing wave predicted by the numerical model 

is fairly sensitive to CB as one might expect. 

A perspective view of the computed water surface is shown in Figure 

5.9. The transition causes a disturbance that reflects down the channel forming 

a diamond-shaped wave pattern. A comparison of computed and experimental 

water surface contours is shown in Figure 5.10. The numerical model certainly 

captures the overall features of the flume. Not surprisingly it is symmetric 

unlike the flume (since it is difficult to control the inflow into a physical flume). 

The numerical model predicts the location of the initial peak upstream of the 

flume's peak by about 0.5ft (about 15 % of the transition length) and each 

subsequent peak is increasingly off. The distance between the first two peaks is 

3.5ft but the model produces only 2.8ft separation. Further down the channel 



Figure 5.9: Supercritical transition: water surface, 3-d perspective view. 
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Figure 5.10: Supercritical transition: comparison of water surface contours, all 
units ft. 



the wavelength in the flume is 3.3ft and the numerical model gives 3.0ft. This 

is a direct result of the shallow water assumption. The various wavelengths 

actually should travel a t  different speeds with the shorter ones traveling more 

slowly. In the shallow water model all waves travel at the speed of an infinitely 

long wave. For example, from equation (1.1) we see that the long wave celerity 

for a depth of 0.3ft is 3.10ft/sec. For the longest wavelength in the flume, 3.3ft, 

the celerity is 2.95ft/sec; the shorter wavelengths are even more significantly 

reduced. This higher wave celerity means that the waves which originate at 

a sidewall boundary will form a standing wave that is swept less backwards 

by the current. Overall though, within the limitations of the shallow water 

assumptions, the comparison is reasonable with symmetry preserved and the 

shapes of the oblique standing waves demonstrated. 

5.2.2 Spillway Form 

At this point we revisit questions concerning the generalized shallow 

water equations as differentiated from the more frequently applied St. Venant 

equations and the generalized shallow water equations with curvature set to  

zero (the standard steep-slope shallow water equations). We do this by recon- 

sidering Sivakumaran's flume results with the improved model, continuing the 

preliminary study reported in Chapter 3. Here we first address longitudinal 

issues since the flume is essentially one-dimensional, leaving lateral and more 

general two-dimensional issues to the next section. 

While the generalized shallow water equations are much more com- 

plicated than the St. Venant equations, we are using bilinear elements with the 



identical number of gauss points for each approach. Hence the models are of 

approximately the same computational effort. If one moved to a higher-order 

perturbation expansion, much more computational effort would be necessary. 

Previous studies by Dressler and Yevjevich [22] compare Dressler's model with 

the St. Venant equations. Since the "Dressler" equations gave markedly bet- 

ter results, they concluded that "curvature" is quite important. However, the 

St. Venant equations enforce another simplification that may contribute t o  the 

difference - the implementation of the mild-slope assumption. We shall inves- 

tigate the nature of the discrepancies between the generalized shallow water 

equations and the St. Venant equations. The standard steep-slope shallow 

water equations will serve as a means of evaluating this additional assumption 

in the St. Venant form. 

Throughout we will refer to the generalized shallow water equations i s  

with "curvature"; when curvature is set to zero it is termed "no curvature", and 

imposing the St. Venant equations as " St. Venant." The test input is shown 

in Table 5.8. The model has the same geometry and node layout as reported 

in Section 3.5. The flow rate is the highest tested by Sivakumaran. Figure 

5.11 shows a comparison of water surface results for each equation set and the 

flume data. The "curvaturen case matches the flume water surface quite well. 

As in Chapter 3,  the "no curvature" case is close to the generalized shallow 

water equations and the flume data in the supercritical region downstream of 

the crest, but shows the bulge due to the kinematic inconsistency we have 

previously discussed. 

The water surface solution for the St. Venant equations starts high 

and drops too quickly. This difference is not due to the hydrostatic assumption 



Table 5.8: Spillway form. 

WATER SURFACE PROFILE 
EFFECT OF CURVATURE TERMS 

Input Parameters 

SPILLWAY BED 
0 FLUMEDATA - CURVATURE - NO CURVATURE 

----- ST. VENANT 

9 
n 
Vt 

At 
Simulation Time 

Iterations 
€ 

-. 1 
-1.0 -.5 .O .5 1 .O 1.5 

DISTANCE, M 

9.81m/sec2 
0.0 
0.0 

0.05sec 
1 Osec 

3 
0.02 

Figure 5.11 : Spillway form: comparison of water surface results. 

Boundary Conditions 
Upstream 

P 
9 

0.11197m3/s/m 
0 



since the "no curvature" case is also hydrostatic. Upstream, the St. Venant 

equations predict a higher water surface to maintain this flow rate but without 

the upstream bulge obtained by simply setting curvature to  zero in the gen- 

eralized shallow water equations. The "no curvaturen case bulge in a concave 

region is due to an overestimate of the differential volume. This in turn requires 

a greater pressure gradient to accelerate the flow. In the St. Venant equations, 

the depth is measured vertically and this problem is relieved. The St. Venant 

mild-slope assumption means that depth is measured vertically and we are es- 

sentially solving the horizontal equations with a modified gravitational force to 

account for bed slope. 

To examine this mild-slope assumption and its effects upon the so- 

lution, we utilize a simple comparison of the St. Venant equations (with the 

mild-slope assumption) and a steep-slope formulation. The steady-state, one- 

dimensional, steep-slope shallow water equations may be written: 

and the corresponding St. Venant mild-slope formulation is: 

where, Q = vd and P = uh. All other geometric terms are defined in Figure 

5.12. Assuming 8 to be a constant, the steep-slope formulation can be written 

in terms of the variables of the mild-slope formulation and, after solving for 



WATER SURFACE 

+.- 1 DATUM (HORIZONTAL) ------ -- _ _ _ _ _ - -  

Figure 5.12: Geometry for mild-slope evaluation. 

water surface slope 2, 

We wish to compare the water surface slope for this steep-slope formulation to 

that of the St. Venant equations near h = h,. The mild-slope result is obtained 

ab by setting 0 = 0. There is a slight ambiguity here in that, = tand, but, 

is actually measured and is not among the terms that are dropped when 6' is 

assumed to be small. 

First we consider subcritical flow. For this case the denominator is 

positive and we rewrite (5.8) 

A comparison between the two forms can be made by setting 0 = 0 in the 

above equation for the mild-slope form. Both have water surface slopes that 

are in the opposite direction of the bed slope. It is also apparent that the 
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Figure 5.13: Subcritical flow: water surface slope comparison. 

magnitude of 2 is larger for the mild-slope form. Figure 5.13 shows examples 

with adverse and favorable bed slopes, and illustrates the relationship between 

the water surface slope predicted by the two formulations. 

For supercritical flow the water surface slope is found to be 

Here the mild-slope assumption again exaggerates the water surface slope but 

in the same direction as the bed slope. The same two examples under super- 

critical conditions are shown in Figure 5.14. The mild-slope assumption used 

in the St. Venant equations tends to exaggerate water surface slope if the bed 

slope is steep. The amplification is roughly related to 1/ cos2 8 times the bed 

slope. Hence the mild-slope assumption is responsible for the differences on 

the downstream spillway face in this example, not curvature effects. 

A comparison of bed pressures is shown in Figure 5.15. The gener- 

alized shallow water equations (curvature case) do a very good job of mod- 

eling these pressures as expected, although their result is slightly high near 

x = -0.5m. This is where the shallowness parameter, (curvature multiplied by 
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Figure 5.14: Supercritical flow: water surface slope comparison. 
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Figure 5.15: Spillway form: comparison of bed pressure results. 
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Figure 5.16: Spillway form: shallowness parameter. 

depth), is the greatest. (It reaches a value of about 0.42, see Figure 5.16.) 

The limit given by Sivakumaran on the applicability of these equations is 

-2 _< nh 5 0.54. While 0.42 is certainly within these limits, we must note 

that the perturbation analysis implies that the water surface "looksn like the 

bed; i.e., the flow is essentially parallel to the bed. The bed-normal acceler- 

ations become more important as this is relaxed. These effects can be acco- 

modated better by going to higher-order terms in the perturbation analysis as 

long as the shallowness parameter is not too large. This is a serious limitation 

to applicability of the model to a large class of spillways which typically have 

a steep upstream face. Downstream, the slight discrepancy near the toe of the 

spillway has been attributed by Sivakumaran to the irrotational flow assump- 

tion (over depth), This is based upon the research of Henderson and Tierney 



1281. Overall, the comparison is quite remarkable. On the other hand, the St. 

Venant and the "no curvature" cases are poor. This is not suprising since both 

are hydrostatic and the St. Venant model measures pressure based on depth 

measured vertically. 

These results indicate that the longitudinal profile of water surface 

and bed pressure are modeled fairly well with the generalized shallow water 

equations. The new model is limited in handling some common spillways in 

which the upstream face is steep. Downstream of the crest, where the flow is 

supercritical, the water surface more closely parallels the bed and thus the per- 

turbation analysis is more accurate. The "no curvature" case of the generalized 

shallow water equations also compares well with the flume water surface. This 

implies that the hydrostatic pressure assumption is reasonable in the down- 

stream supercritical reach. The overall poor comparison with the St. Venant- 

model can be attributed to the mild-slope assumption. The poor spillway ca- 

pacity prediction is a result of the hydrostatic assumption in the steep-slope 

and the St. Venant models. 

5.2.3 Outletworks Flume. 

The final test is the most general we shall undertake. We compare 

the previous sets of model equations to an outletworks physical model at the 

Waterways Experiment Station, WES. Here our primary concern is the lateral 

behavior predicted by the mathematical models for more realistic structures. 

A diagram of the flume, as tested, is shown in Figure 5.17. The plan view 

geometry for the flume and the model are identical but the numerical approx- 
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Figure 5.1'7: Outletworks flume: flume and numerical model geometry. 



imation to bed elevation has smooth transitions to provide a continous slope. 

The dimensions of the flume were chosen such that typical operating condi- 

tions place the flow regime within the fully turbulent region. For our test, the 

Reynolds number is about R $ s 200000, which indicates that scale-effects 

are small. For even relatively smooth bed and wall conditions the flume will 

be in the fully turbulent regime (see [48, 131). Therefore, we might reasonably 

expect the flume results to exhibit behavior similar to large-scale structures of 

this type. 

The bed elevation of the flume is purposely laid out longitudinally 

as a parabolic function to minimize flow separation. The actual dimensions in 

Figure 5.17 are "as measured" and vary slightly from the construction spec- 

ifications, primarily as a result of settling. The transition from the circular 

conduit to the apron is fairly complicated. The walls have a slight flair with a 

radius of 2.75ft and the bed has fillets to move smoothly from the round con- 

duit to the rectangular section of the apron. The apron wall has an outward 

slope of approximately i. A level stilling basin which contains baffles and an 

end sill is located 4.015ft from the conduit exit. These stilling basin features 

are not numerically modeled here; since these effects far downstream are of 

lesser importance to the spillway flow. The actual bed elevation numerically 

modeled (as shown in Figure 5.17) contains no discontinuities in slope so that 

the curvature exists throughout. The bed is flat in the lateral direction, i.e., 

all slope and curvature variations are in the longitudinal direction. 

The flume water surface is recorded every 0.05ft laterally and every 

0. loft longitudinally. An additional reading is made near the sidewalls (typi- 

cally within 0.02ft). The measurements are recorded with a point gage capable 



of measuring to a precision of 0.001ft (it is graduated in 0.01 ft units and with 

a vernier one can detect 0.001 changes). In reality the water surface is quite 

rough and time varying, so that readings are approximately accurate to about 

0.02ft. The flow rate is measured using a 12 by 6 inch venturi meter with a 

differential manometer. The inflow pressure is maintained by a constant head 

tank. The manometer calibration is checked using direct measurements of vol- 

ume change in a specific time period. The discharge is estimated [57] to be 

accurate within 3 %. 

The flume water surface results are shown in Figure 5.18 as a three- 

dimensional perspective for a flow rate of 2.56 cfs (cubic feet per second). The 

view shows the lateral hump in the water surface as the flow exits the outlet 

conduit. This eventually spreads to a relatively uniform depth as intended in 

the design. If, however, flow becomes focussed the result will be circulation in 

the stilling basin with possible damage there. The nonuniform velocity field 

would also cause more downstream erosion. The drag of the apron sidewalls 

causes the sharp rise in water surface. The buildup in water depth along the 

sides of the stilling basin is a result of the change in side slopes. 

The numerical model is constructed of 408 nodes and 368 elements 

(see Figure 5.19). It extends longitudinally from x = 0.75ft to x = 6.0ft. 

The upstream boundary is therefore below the complex geometry of the fil- 

lets near the conduit exit and the vertical velocity profile should be closer to 

an open-channel flow distribution. The flow is supercritical throughout the 

study reach, and at the upstream boundary the velocity and depths are speci- 

fied. The depths are the flume results interpolated from the 0.70ft and 0.80ft 

ranges. The x component velocity distribution is assumed to be uniform across 



Figure 5.18: Outletworks flume: water surface results, perspective view. 



Figure 5.19: Outletworks model: computational mesh. 

the upstream boundary. The lateral velocity component at the inlet is speci- 

fied so that the flow is tangent to the sidewalls and zero in the channel center 

with linear variation between these stations. These are the simplest reasonable 

boundary conditions and should be suitable for a comparison of model equa- 

tions. Furthermore, this is as much information as a modeler typically has to 

make a site-specific study. Other model conditions are shown in Table 5.9. The 

Table 5.9: Outletworks model. 

I n ~ u t  Parameters 

I 

Simulation Time / 15sec I 
Iterations I 3 



Figure 5.20: Outletworks flume: depth contours. 

turbulent viscosity corresponds to a value of CB of about 0.1. 

Figures 5.20 - 5.23 show the depth contours for the flume, the general- 

ized shallow water equations, the standard steep-slope shallow water equations,. 

and the St. Venant equations. The flume and St. Venant measurements are 

made vertically as water surface elevations which we have converted to depths 

normal to the bed. The flume data in the upper region reveal a continuation of 

the conduit shape, i.e., a hump in the water surface with the centerline being 

a relative maximum. This form ends near x = 1.75ft. From there on the cen- 

terline is a relative minimum or the surface is nearly flat. This is the desired 

pattern for a good hydraulic design. At the channel edges the wall drag causes 

a substantial buildup of water depth. 

A most important result of the generalized shallow water equations 

is the more gradual lateral spread of the flow tube. As an illustration, within 

the portion of the flume modeled here, the flume shows the centerline to  be 

a relative maximum for about l.Oft. The model including curvature gave a 



Figure 5.21 : Outletworks model: generalized shallow water equations, depth 
contours. 

Figure 5.22: Outletworks model: standard steep-slope shallow water equations, 
depth contours. 



Figure 5.23: Outletworks model: St. Venant equations, depth contours. 

similar length. The steep-slope shallow water model (no curvature) and the 

St. Venant equations are nearly identical throughout the domain. The length 

for which the centerline is a maximum as predicted by these models is only 

about 0.7ft. Hence, the nonhydrostatic component has a definite effect upon 

the wave speed here. This is a region in which the flow is entirely supercritical 

and for which our one-dimensional test showed little improvement by includ- 

ing the nonhydrostatic pressure component in the generalized shallow water 

equations. However, now the lateral variation is strongly dependent upon the 

nonhydrostatic contribution. The predicted wave celerity for a similar case in 

which the curvature and dominant flow direction are along the x axis can be 

shown (see [20]) to be 

log (1 - Klh) 
Cgswe = 

(1 - K l h ) 4  

On the other hand the celerity without curvature included is simply 
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Figure 5.24: Outletworks flume: lateral depth profiles. 

A convex curvature ( K ~  negative) produces a lower celerity in the generalized 

equations which is not captured in the standard shallow water equations. The  

true solution, which includes nonhydrostatic pressure contributions as a result 

of short wavelengths in addition to bed curvature effects, has a wave celerity 

that is even smaller than the generalized equations predict. In a concave region 

(positive curvature) the wave celerity predicted by the generalized shallow water 

equations will be greater than from the standard shallow water equations. 

Lateral profiles of depth are shown in Figures 5.24-5.26. The fig- 

ures include flume, generalized shallow water, and standard steep-slope shallow 

water results. The St. Venant results are nearly identical to the standard steep- 

slope results. The lateral profiles are at distances downstream of the conduit 

of 1.0, 1.6, 2.8, and 5.0ft. These results provide an additional view of the infor- 
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Figure 5.25: Outletworks model: generalized shallow water equations, lateral 
depth profiles. 
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Figure 5.26: Outletworks model: standard steep-slope shallow water equations, 
lateral depth profiles. 



mation contained in the contour plots. Between l.Oft and 1.6ft the flume and 

model including curvature effects show a gradual collapse of the wave. With 

no curvature effects the wave has propagated out to the edges leaving a trough 

in the center. Downstream, the distinction between the results from the two 

model equation sets is very small. The model in both cases only captures the 

behavior of the flume in a qualitative sense. One reason is that we use actual 

flume measurements for the water surface upstream boundary condition, but 

rely upon a uniform velocity profile. A second reason is that the wavelength of 

the hump in the channel center is only about l f t  while the the depth is nearly 

0.4ft. This collapse rate is really a short-wave phenomenon not capable of be- 

ing accurately represented by a long-wave model. However, the effects of the 

bed curvature are captured and do improve the comparison in the generalized 

shallow water model. 

The lateral velocity profile comparisons between the generalized shal- 

low water equations and the standard steep-slope shallow water equations are 

shown in Figures 5.27-5.30. The distinctive differences in these figures occur 

at x = l.Oft and x = 2.8ft. At x = l.Oft the pressure is lower for the case 

with curvature, and since velocity is dependent upon the pressure gradient, the 

lateral velocity is lower. At x = 2.8ft, the model with curvature produces gen- 

erally higher lateral velocities. The outward propagation of the lateral wave is 

quicker in the "no curvaturen case and the peak has propagated out to the wall, 

whereas, for the case including curvature, the outer depth has not reached its 

peak. The result is a reduced adverse gradient a t  this point in the generalized 

equations, and thus slightly larger outward velocity. 

The mild-slope assumption made little difference for this case; i.e., the 
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Figure 5.27: Outletworks flume: lateral velocity profiles, x = 1.Oft. 

St. Venant equations yielded results quite close to those of the standard steep- 

slope equations. On the other hand the bed curvature effects are important and 

the generalized shallow water equations did give better results for the water 

surface distribution. However, the primary concerns around an outletworks are 

related to  the spread of the flow tube which is a short-wave phenomena and 

none of the models performed well in this regard. 

5.3 Discussion 

The most striking contrast between results of the generalized shallow 

water equations and the other formulations is in the predictions of spillway 

capacity. This is indeed a result of the hydrostatic pressure distribution used 



in the standard equations. In reality the negative curvature near the crest of the 

spillway reduces the pressure and so allows more flow for a given water level. 

We shall develop an understanding of this by considering a linearization of 

the generalized shallow water equations that will allow us to estimate spillway 

capacity for the standard methods and the change expected by implementation 

of the generalized shallow water equations. 

Consider the discharge per unit width (for a one-dimensional flume) 

as defined in the generalized shallow water equations to be given by 

where, uh is the velocity a t  the surface and as before f ( h )  = 1 - ~ h .  The 

specific energy is given by 
n 

This is the energy at the surface with the datum at  the spillway crest. We wish 

to compare the spillway capacity as determined by the specific energy with 

curvature and for no curvature. The "no curvature" case corresponds to the 

St. Venant model and the standard steep-slope shallow water equations. For a 

given discharge the specific energy is a minimum at  the spillway crest. We can 

see this by considering an idealized flow in a subcritical channel. Across the 

channel is a "bump" that is originally of very small height. Now as we gradually 

raise the height of the bump a choke point is eventually reached where any 

further increase in the "bump" height will cause the upstream water surface to 



rise. Additional energy is required to pass this flow for any additional increase 

in height. Also, downstream of the bump the flow is no longer subcritical. So 

at  the crest of the bump the flow is termed critical and the specific energy is a 

minimum. 

Now using equations 5.14 and 5.15 for x = ~ h ,  and I x I<< 1, where 

h, is a nominal value of h, an approximation for specific energy is 

Minimizing, we find h,, the critical depth 

or in terms of specific energy 

This demonstrates that if x < 0, as it would be near the crest the specific 

energy is less than for the no curvature case, x = 0. Therefore, we would 

expect the St. Venant model and other models not including bed curvature to 

underestimate spillway capacity. 

If we solve for the discharge in terms of the required specific energy 

we obtain the spillway capacity. The ratio q, of discharge without curvature 

terms to that with curvature included is approximated by 

as demonstrated in Figure 5.31. 



Hence we see that near the crest the curvature terms are very impor- 

tant. Models not including this nonhydrostatic effect will overestimate critical 

depth and underestimate spillway capacity. As shown in Figure 5.31 this can 

be significant. The two-dimensional model can treat this along with the side 

constrictions to capture the spillway capacity more accurately. 
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Figure 5.28: Outletworks fiume: lateral velocity profiles, x = 1.6ft. 
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Figure 5.29: Outletworks flume: lateral velocity profiles, x = 2.8ft. 
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Figure 5.30: Outletworks flume: lateral velocity profiles, x = 5.0ft. 
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Figure 5.31: Spillway capacity ratio. 



Chapter 6 

Conclusion 

In this investigation we have developed a generalized shallow water 

equation set to reproduce free-surface flow over curved beds and applied the 

model to spillway flows. These generalized shallow water equations include 

bed curvature effects, are nonhydrostatic, and are two-dimensional, The equa- 

tions are derived via a perturbation expansion in a shallowness parameter. A 

significant assumption made in this derivation is that the flow is irrotational 

about axes parallel to the plane of the bed. However, there is no limitation on. 

vorticity about axes normal to the bed. 

A one-dimensional model was constructed to assess numerical prob- 

lems and determine additional needs for the final two-dimensional investigation. 

This finite element model was straightforward and employed time-lagging of 

nonlinear terms. We considered available flume data for a simple curved bed 

profile. In comparing the one-dimensional equations with and without curva- 

ture the principal differences occured upstream of the spillway crest. This is 

important since this is the spillway capacity. 

The numerical handling of the convection terms used a method of 

artificial viscosity weighted by the convection velocity. At first a Taylor Weak 

Form approach was attempted but was shown to have some difficulty near 

points of transition from supercritical to subcritical regimes and vice versa. 



The artificial viscosity avoided these problems but also has some detractions 

and was replaced in the final two-dimensional model. (One obvious problem 

with the viscosity approach is adding diffusion terms to the mass conservation 

equation.) 

The final development involved a two-dimensional model in which the 

nonlinear terms were addressed via a Newton Raphson technique, iterating a t  

each time step, This allows larger time steps. We introduced a Petrov Galerkin 

scheme based on the SUPG idea and A-schemes in which the test function is 

weighted using the eigenvalues of the convection matrices. 

A two stage testing program was conducted. The first stage vali- 

dated the discrete model against analytic benchmark cases and the second 

stage compared the model results to flume data. The first stage was accom- 

plished by several one-dimensional tests performed along the sl and then along 

s2 directions. These tests were for both constant and variable curvature. The 

Bernoulli equation served as the standard for comparison. This validated the 

discrete model for the derived equations. 

Tests of the suitability of the equations were then undertaken by 

comparison to actual flume data. The first study was a comparison to  a su- 

percritical transition in which there was no bed curvature. This was primarily 

a test of the numerical scheme and boundary condition implementation. The 

model performed well within the limitations of the shallow water equations. 

The next set of tests was made for a curved bottom flume with straight 

walls. Results from the generalized shallow water equations compared remark- 

ably well to the flume water surface data. The spillway capacity was accurately 



captured and a comparison of bed pressure was quite good. The St. Venant 

and the standard steep-slope shallow water equations missed the spillway ca- 

pacity, both prediciting a greater water surface elevation to attain the steady 

discharge. (The hydrostatic pressure assumption misses the reduction in pres- 

sure caused by the uplift of the flow over the curved crest. This is responsible 

for the error in spillway capacity.) 

Along the downstream face the standard steep-slope formulation com- 

pared fairly well with the generalized shallow water equations and flume data. 

The St. Venant equations predicted too steep a water surface slope. This was 

shown to be a result of the mild-slope assumption, and not curvature related. 

The principal improvement of the new equations over the "no curvature casen 

is in the neighborhood of the spillway crest. 

We collected experimental data on a flume at  the Waterways Exper- 

iment Station designed to study outlet works. Here the emphasis was upon 

lateral variations in water surface. The improvement offered by the new equa- 

tions was subtle showing slower (and more realistic) spread of the flow conduit 

over negative curvature regions. Overall, however, the representation of what is 

essentially a short wave phenomena was weak. However, the results did provide 

a qualitative picture of the flow that is beneficial for designers. 

A list of the conclusions then is as follows: 

1. These equations are a significant improvement over standard steep-slope 

shallow water equations in the vicinity of the spillway crest. Within the 

stated restrictions on the size of curvature and depth, these equations 

can provide a good representation of spillway capacity. 



2. These equations do show an improvement in the lateral depth distribu- 

tion though they are shallow water equations and suffer in predicting 

phenomena associated with short wavelengths. 

3. Along the downstream face of the spillway or outlet channel the flow is 

supercritical and the difference in water surface attributable to curvature 

is small, generally on the order of precision used in physical model flumes. 

4. The St. Venant equations proved to be much worse than the generalized 

or the standard steep-slope shallow water equations along the downstream 

face. The difference, however, is attributable to the mild-slope assump- 

tion and not to the hydrostatic pressure assumption or other curvature 

manifestations. 

Recommendations for Future Work 

The equations are most important in the region around the spillway 

crest and for evaluation of contraction effects near the ends of the spillway. 

This is where the nonhydrostatic pressure distribution is most critical. Future 

research should concentrate on this issue. Furthermore: 

1. Many spillways have steep faces and abrupt curvature that violate the 

limits imposed by the shallowness condition in this perturbation expan- 

sion. This significantly reduces the pressure at the crest and so increases 

spillway capacity. To be a practical tool, the model needs to  be extended 

to this more general case, perhaps by the calculation of a flow line repre- 

senting the bed. 
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2. Higher-order terms in the expansion for the steep-slope shallow water 

equations can also be constructed for this region. In particular, do these 

equations represent this region as well as the generalized shallow water 

equations? Of course, these Boussinesq equations include third-order 

spatial derivatives and so will require additional computational effort and 

some improved convection scheme. 

3. The unsteady behavior of the equations could be quite interesting. In 

fact, even for steady boundary conditions the highly nonlinear flow near 

and along the spillway face is unsteady. 



Appendix 

Integration of Coefficients 

The integration of the coefficients used in the generalized shallow 

water equations was accomplished using the software Mathematiea [43] and are 

as follows: 
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- - h2 ~ 2 h  + log f 2  ( h )  

2 ~ 2 f 2  (h12 + ~ 2 ~ f 2  ( h )  
(2h - mh2) log f 2  ( h )  + 2 logf2  ( h ) ]  + 

K 2  ~ 2 f 2  ( h )  
h 1  f 2  (0 

b12 = /O ( f 2  ( s ~ ) ) ~  1 mdtdS3 
- - 1 

~ 2 ~ l f 2  ( h )  
[ ~ 2 h  + f 2  ( h )  1% f 2  ( h )  

K 1  

h 1  

K 2  

+ (-.1f2 ( h )  logf2 ( h )  + ~ 2 f l ( h >  1% fl ( h ) )  
K l ( ~ 2  - 4 )  

h 1  t f 2  ( F )  d<dS3 
I 

' 14  = /D ( f 2  ( ~ 3 ) ) ~  ' ( f 1  (t)12 
h log f 2  ( h )  - 1% fl ( h )  

( ~ 2  - ~ 1 ) ~  

h 



The coefficients which must be evaluated in the limit when ~ 1  + 0, ~2 -+ 0, 

~ 1  + 6 2 ,  and ~ 1 ,  ~ 2  --, O are as follows: 
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